A Robustness Consideration in Continuous Time $\mathcal{[K,KL]}$ Sector for Nonlinear System

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Robustness and ambiguity in continuous time

We use statistical detection theory in a continuous-time environment to provide a new perspective on calibrating a concern about robustness or an aversion to ambiguity. A decision maker repeatedly confronts uncertainty about state transition dynamics and a prior distribution over unobserved states or parameters. Two continuous-time formulations are counterparts of two discrete-time recursive sp...

متن کامل

Designing Robust Finite-Time Nonlinear Torques for a n-DOF Robot Manipulator with Uncertainties, Sector and Dead-Zone Input Nonlinearities

In this paper, a complete dynamical model is presented for an uncertain -DOF robot manipulator containing description of sector and dead-zone input nonlinearities. Next, robust finite-time tracking problem of desired trajectories is declared and formulated for the aforementioned robot manipulator. By defining innovative nonlinear sliding manifolds and developing the nonsingular terminal sliding...

متن کامل

A real-time learning control approach for nonlinear continuous-time system using recurrent neural networks

In this paper, a real-time iterative learning control (ILC) approach for a nonlinear continuous-time system using recurrent neural networks (RNN’s) with time-varying weights is presented. Two RNN’s are utilized in the ILC system. One is used to approximate the nonlinear system and another is used to mimic the desired system response. The ILC rule is obtained by combining the two RNN’s to form a...

متن کامل

Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems

‎Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated‎. ‎In this paper‎, ‎we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties‎, ‎and we prove the global ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2901806